USN

Third Semester B.E. Degree Examination, Dec.09/Jan.10 Logic Design

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Show that y = f (ABCD) = ∑ (0, 2, 5, 7, 8, 10, 13,15) is the complement of y = f(ABCD) = π(1, 3, 4, 6, 9, 11, 12, 14). Illustrate your answer using Karnaugh map to show the complement nature of the two equations. Realize both the functions using 7486 IC chip [Exclusive OR gates] only.
 - b. Design a logic circuit that controls the passage of a signal 'A' according to the following requirement.
 - i) Output 'X' will equal 'A' when control inputs B and C are the same.
 - ii) 'X' will remain 'HIGH' when B and C are different Implement the circuit using suitable gates.

(08 Marks)

- 2 a. Simplify the following expression using Quine- McClusky technique. Implement the simplified circuit using basic gates: $f(ABCD) = \sum (1, 3, 4, 5, 6, 9, 11, 12, 13, 14)$. (12 Marks)
 - b. Simplify the following Boolean expression using VEM technique. [3 variable map]. $f(ABCD) = \sum m(0, 4, 5, 6, 13, 14, 15) + dc(2, 7, 8, 9)$

A	В	C	D	·f	5.	,				A	В	C	D	\mathbf{f}
0	0	0	0	1					0	1	0	0	0	ф
0	0	0	1	0						1	0	0	1	ģ
0	0	1	0	ф					ē	1	0	1	0	Ó
0	0	1	1	0						1	0	1	1	0
0	1	0	0	1						1	1	0	0	0
0	1	0	1	1			34	10		1	1	0	1	1
0	1	1	0	1					33	1	1	1	0	1
0	1	1	1	ф						1	1	1	1	1
$\phi =$	don	't ca	re te	rm.										

(08 Marks)

- 3 a. Design a logic circuit using a 3 to 8 logic decoder that has active low data inputs, an active HIGH enable and active low data outputs. Use such a decoder to realize the full adder circuit.
 - b. (08 Marks)

 Design a suitable BCD adder circuit using 74LS83 and a provision has to be made for self correction in case if the sum is not a valid BCD number format. (12 Marks)
- 4 a. Implement the following Boolean function using 4:1 MUX $y (ABCD) = \sum m (0, 1, 2, 4, 6, 9, 12, 14)$. (10 Marks)
 - b. Design a circuit that accepts 2 unsigned 4 bit numbers and provides 3 outputs. The inputs are $A_3 A_2 A_1 A_0$ and $B_3 B_2 B_1 B_0$. Outputs are A = B, A > B and A < B. Draw the logic diagram. (10 Marks)

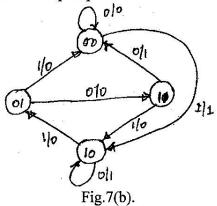
PART - B

- 5 a. Explain the following:
 - i) Switch debouncing and it's elimination
 - ii) Race around problem and its elimination.

(14 Marks)

- b. Obtain the characteristic equation for the following flip flops:
 - i) JK flip flop
 - ii) SR flip flop.

(06 Marks)


- 6 a. With the help of a diagram, explain the following with respect to shift register:
 - i) Parallel in and serial out
 - ii) Ring counter and twisted ring counter.

(08 Marks)

b. Design a Mod – 5 synchronous counter using JK flip flop.

(12 Marks)

- 7 a. With a suitable example, explain Mealy and Moore model in a sequential circuit analysis.
 (10 Marks)
 - b. A sequential circuit has one input and one output. The state diagram is as shown in Fig.7(b). Design a sequential circuit with 'T' flip flop. (10 Marks)

- 8 a. Analyse the following sequential circuit shown in Fig.8(a) and obtain:
 - i) Flip flop input and output equations.
 - ii) Transition equation
 - iii) Transition table
 - iv) State table
 - v) Draw the state diagram.

(12 Marks)

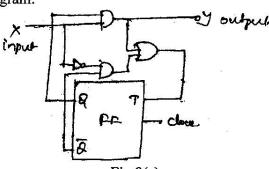


Fig.8(a).

b. With a suitable example and appropriate state diagram, explain how to recognize a particular sequence. Ex: 1011. (Any sequence can be assumed). (08 Marks)